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Abstract

This report summarizes our recent progress on the development of photonic nanos-
tructures for sensing and information processing. We have developed a nitrogen va-
cancy (NV) spin qubit-cavity system in the strong Purcell regime in which the spin
qubit predominantly interacts with the cavity mode. This system is realized in a
single-crystal diamond photonic crystal nanocavity with quality factors (Q) up to 104.
Furthermore, we measure electron spin coherence times of cavity-coupled NVs of 200
µs. We have also developed techniques for NV-based super-resolution imaging and pre-
cision sensing, using high-speed parallel readout on a microscope camera; and we have
developed techniques for precision clocks based on collective oscillation of ensembles of
NVs. We also report on graphene electro-optic devices and sensors.

1 Progress towards on-chip quantum network in dia-

mond

The field of quantum information processing (QIP) takes advantage of the properties of
quantum mechanics to perform tasks that are classically impossible, including exponentially
faster computational algorithms, unconditionally secure communication, and efficient simu-
lation of complex physical and biological models [1, 2]. A number of recent theoretical and
experimental advances have identified promising candidate systems for the implementation
of quantum information technologies. A key requirement of such a system is the ability to
create shared quantum entanglement among a large number of quantum memories that are
individually addressable. This entanglement can be created through atom-photon interac-
tions, allowing the establishment of quantum networks for the implementation of theoretical
protocols, including the teleportation of distant stationary qubits via photons [3], the conver-
sion of quantum states of light and motional states of atoms [4], and quantum computation
through cavity-assisted interactions [5]. The quantum network requires long-lived quantum
memories, such as particle spins, that can be efficiently mapped to photons through high-
fidelity quantum interfaces. While several atomic systems, such as trapped ions, now fulfill
these requirements, there is strong interest in solid-state implementations for scalability,
stability, and device integration.

Among solid-state qubits, the negatively charged nitrogen vacancy (NV−) center in di-
amond has in recent years emerged as one of the most promising systems. The NV center
consists of a nitrogen atom adjacent to a vacancy in the diamond lattice. This lattice point
defect creates an atom-like electronic wavefunction with well-defined spin and orbital an-
gular momentum. Spin-selective optical transitions allow individual NV electron spins to
be easily observed using standard confocal microscopy. The NV has two unpaired electrons
that naturally provide a ground state with three electron spin sublevels. Two sublevels are
employed to encode a quantum bit (qubit). Because of the nearly nuclear spin-free carbon
lattice and weak spin-lattice interactions, these electronic ground states have extremely long
coherence: milliseconds-scale phase coherence times have recently been reported [6] at room
temperature, longer than any other solid state electron spin qubit. Furthermore, the elec-
tronic spin state may be coupled to proximal nuclear spins, providing additional degrees
of freedom that have been employed as quantum logic gates [7]. A primary of goal of this
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Figure 1: (a) The single-crystal diamond cavities are suspended over a microwave wire for
spin manipulation. Fluorescence excitation and collection is from top through a confocal
microscope. (b) The cavity design results in a maximum electric field in the diamond at
the center to optimize coupling to the NV. (c) Scanning electron microscopy images of the
cavities.

program is to develop techniques to entangle distant NV spin qubits by optical interactions.
To this end, we have developing techniques to incorporate NV centers with long spin lifetime
into optical resonators, and to efficiently interface these with photons. However, the lack of
thin film technologies for crystalline diamond with low impurity levels hampers development
of photonic interfaces to such diamond-based qubits. Over the course of this program, we
have developed several methods for manufacturing slabs of diamond of 200 nm thickness and
several microns in extent from high purity single crystal CVD diamond [8, 9, 10].

1.1 On-chip Quantum Control of a Cavity-Coupled NV system in
Diamond

In recent months, we have also succeeded in a primary goal of this program – the fabrica-
tion of high-quality photonic crystal nanocavities in single crystal diamond. These cavities
and related structures, such as waveguides, were fabricated by first thinning 10-um thick
diamond membranes (produced by mechanical polishing by Element 6) and then thinned
using Cl and oxygen reactive ion etching chemistries to ∼ 200 nm.

We employ a one-dimensional ladder PhC cavity design for maximal emitter enhance-
ment and increased collection efficiency of cavity-coupled ZPL photons. The ladder PhC
device consists of a suspended diamond waveguide patterned with a one-dimensional lattice
of rectangular air gaps that defines a periodic dielectric profile, as shown in Fig.1. Low-
temperature measurements indicate a Purcell enhancement of the zero-phonon-line (ZPL)
of cavity-coupled NVs in excess of 60. An example of such a spectrum is shown in Fig. 2,
where the spectrally selective enhancement of the ZPL is estimated at 122. This results in
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Figure 3: Coupling NV ZPL with cavities at low-temperature.

trolled gas flow onto the sample. This feature can be used for condensation and ice formation of gas

(e.g. Xe) onto the sample, hence changing the effective refractive index of the diamond membrane.

This refractive index change allows to spectrally red-tune cavity resonances with about 8 pm/s; de-

tails are introduced in the Methods. To take full advantage of this tuning technique the cavities

were designed to have resonances spectrally blue-shifted of the ZPL. Xe gas can then be used to

achieve precise, spectrometer-controlled, in-situ tuning of the cavity to overlap its resonance with

the ZPL.

In this letter, we present two methods to estimate Purcell factor enhancement of SE rates.

First, radiative enhancement can be estimated by the ratio of SE being emitted into the ZPL and into

10

Figure 2: Coupled NV-cavity spectrum, showing an enhancement of the NV ZPL transition
rate of ∼ 62.

more than 80% emission into the ZPL, compared to just ∼3% for naturally occurring NVs.
The spin coherence times of NVs coupled to such cavities is similar to that observed in

high-purity bulk diamond. We measured the coherence times using a confocal microscope
setup and a microwave strip line integrated directly underneath the diamond cavities, as
illustrated in Fig. 1. Our measurements indicate a phase coherence time in excess of 200µs,
as evaluated using a Hahn-echo protocol [10]. This represents a two order of magnitude
improvement in the coherence time of solid state quantum memories coupled to cavity-based
spin-photon interfaces. We are currently implementing dynamic decoupling spin protocols,
which puts the spin coherence times of such emitters beyond 1 ms.
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1.2 Scalable Fabrication of High Purity Diamond Nanocrystals
with Long-Spin-Coherence Nitrogen Vacancy Centers

The nitrogen vacancy (NV) center in nanodiamond has been the focus of many recent in-
vestigations across a broad range of applications, including its use as a spin qubit in a hybrid
photonic architecture and as highly localized sensor of temperature and magnetic fields that
can be integrated with biological systems. The performance of the NV for these applications
depends crucially on its electron spin phase coherence time, which is limited to microseconds
in high-pressure high-temperature (HPHT) diamond nanocrystals due to a high concentra-
tion of paramagnetic impurities. With PECASE support, we have demonstrated a top-down
fabrication process using a porous metal mask and a self-guiding reactive ion etching process
that enables rapid nanocrystal creation across the entirety of a high-quality chemical vapor
deposited (CVD) diamond substrate. High-purity CVD nanocrystals produced in this man-
ner exhibit NV phase coherence times in excess of 200 µs. This record-long spin coherence
time enabled record-precision magnetometry with diamond nanocrystals [11].

1.3 Wide-Field Multispectral Super-Resolution Imaging Using Spin-
Dependent Fluorescence in Nanodiamonds

Recent advances in fluorescence microscopy have enabled spatial resolution below the
diffraction limit by localizing multiple temporally or spectrally distinguishable fluorophores.
With PECASE support, we introduced a super-resolution technique that deterministically
controls the brightness of uniquely addressable, photostable NV centers, whose brightness
is modulated deterministically by optically detected magnetic resonance techniques [12].
Using a CCD camera, this “deterministic emitter switch microscopy” (DESM) technique
enables super-resolution imaging with localization down to 12 nm across a 35× 35µm2 area.
DESM is particularly well suited for biological applications such as multispectral particle
tracking since fluorescent nanodiamonds are not only cytocompatible but also nonbleaching
and bright. We observe fluorescence count rates exceeding 1.5 ×106 photons per second
from single NV centers at saturation. When combined with emerging NV-based techniques
for sensing magnetic and electric fields, DESM opens the door to rapid, super-resolution
imaging for tracking and sensing applications in the life and physical sciences.

2 Graphene Photonics

Graphene features unique optical properties. Strong light-matter coupling yields an un-
expectedly high opacity for an atomic monolayer with a startlingly simple value: it absorbs
πα ≈ 2.3% of white light, where α = e2/h̄c ≈ 1/137 is the fine-structure constant. This is “a
consequence of the unusual low-energy electronic structure of monolayer graphene that fea-
tures electron and hole conical bands meeting each other at the Dirac point.”[13] Graphene’s
optical absorption, and generally the light-graphene interaction, can be further increased
by enhancing the light-matter interaction using waveguides or cavities. With support of
this PECASE program, we have developed high-contrast graphene opto-electronic modula-
tors [14, 15] based on graphene integrated in photonic crystal nanocavities. We have reported
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operating speed in excess of 1 GHz [16], and are currently working on a new generation of
devices that indicate substantially faster modulation speed.

Graphene photodetectors have recently attracted much attention because of the mate-
rial’s fast carrier dynamics and the possibility of photodetection as fast as 500 GHz, as well
as intrinsic carrier multiplication effects in graphene. A remaining problem concerns the lim-
ited optical absorption in graphene, which results in a low optical responsivity. We addressed
this problem by coupling a graphene photodetector to a silicon-on-insulator waveguide, see
Fig. 4. The extended interaction between graphene and the silicon waveguide enables a high
responsivity of photodetection of 0.108 A/W, competitive with current non-avalanche Ge de-
tectors for silicon photonics integration [17, 18]. Owing to the high mobility of both electrons
and holes, the photodetector displays a high frequency response (up to 20 GHz) even under
zero bias operation with a responsivity of 16 mA/W. We have also demonstrated data trans-
mission at up to 12.5 Gbps [19]. We recently also demonstrated a photonic cavity-integrated
high-responsivity graphene photodetector [20], which enables wavelength-selective receivers
with ultra-small footprint on photonic integrated circuits.

(a) (b) (c)

Figure 3: Enhancement of coupling from free space modes to graphene. (a) Scanning electron
microscope image of PPC cavities integrated with single-layer graphene. The darker shade defines
the edges of the graphene monolayer. (b) Simulated energy distribution of fundamental resonant
mode of the L3 cavity, shown in plane (top) and in cross-section (bottom). The graphene layer
interacts with the evanescent field. (c) The single atomic layer of graphene couples strongly to the
cavity field, sharply reducing the cavity quality factor by over 100×. The strong interaction allows
for cavity-enhanced Raman spectroscopy on sub-wavelength regions of a graphene sample [14] as
well as high-contrast electro-optic modulation [15].

3 Polymer Photonics for Information Processing and

Sensing

Polymers have appealing optical, biochemical, and mechanical qualities, including broad-
band transparency, ease of functionalization, and biocompatibility. However, their low re-
fractive indices have precluded wavelength-scale optical confinement and nanophotonic appli-
cations in polymers. With PECASE support, we developed a suspended polymer photonic
crystal (SPPC) architecture that enables the implementation of nanophotonic structures
typically limited to high-index materials [21]. We demonstrated nanophotonic band-edge
filters, waveguides, and nanocavities featuring quality (Q) factors exceeding 2,300 and mode
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Figure 1. A waveguide-integrated graphene photodetector. a, Schematic illustration of the device. The silicon bus waveguide with dimension of 
220 nm by 520 nm is fabricated on a silicon-on-insulator wafer, and then planarized using a silicon dioxide material. A graphene layer is 
transferred onto the planarized waveguide, which is contacted to two metal electrodes. The silicon waveguide and graphene is isolated by a 
~10~nm silicon oxide layer electrically. We design one of the electrodes closer to the waveguide to build a potential difference on graphene 
coupled with the evanescent field of the waveguide, which enables the ultrafast and efficient photodetection. b,  Optical microscope image of the 
device.  A bi-layer graphene is deposited on the waveguide. The light transmits along the waveguide and couples with the graphene effectively. 
Two Ti/Au electrodes are designed to conduct the photocurrent across the graphene. c, SEM image of the device (false colors), showing a gap 
with width near 100~nm between one of the metal contact and the waveguide. The length of the bi-layer graphene is confirmed as about 53μm 
long.    
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Figure 3. Performance of the device when excited by the light transmitting in the waveguide. a, Top: Simulated electrical field of the transversal 
electrical guided mode for the waveguide integrated with the graphene layer and the metal contacts. Field distributions at the grpahene layer and 
along the middle vertical line of the device is superposed on the image as the top and left curves. Bottom: Potential profile in the graphene 
photodetector, showing the effective overlap between the optical field and the potential difference around the metal/graphene interface. b, Source-
drain bias dependence of the photodetection in the device excited by the evanescent field of the guided light. The incident laser has a wavelength 
of 1550 nm. The responsivity at zero source-drain voltage is 15.7 mA/W. c, Photoresponsivity of the device  as a function of the excited 
wavelength from 1450 nm to 1590 nm, showing a boradband flat responsivity of the device. d, Photocurrent of the device with respect to the 
excited power from a pulsed laser, showing saturation starts at the power of 9.6 mW. 
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Figure 4: A waveguide-integrated graphene photodetector. (a) Illustration of the device. The
silicon bus waveguide with cross-section of 220 nm by 520 nm is fabricated on a SOI wafer and
then planarized using SiO2. A graphene layer is transferred onto the planarized waveguide and is
separated from the waveguide by a ∼ 10 nm-thick SiO2 layer. Two metal electrodes contact the
graphene and conduct the generated photocurrent. One of the electrodes is closer to the waveguide
to create a potential difference on graphene coupling with the evanescent field of the waveguide,
which enables the ultrafast and efficient photodetection. b, Optical micrograph of the device with
a bi-layer graphene covering on the waveguide. Two Ti/Au (1/40 nm) paddles are evaporated
onto the graphene sheet. (c) Measured photocurrent of the device with respect to the incident
power at zeros bias, showing a photoresponsivity of 15.7 mA/W. Inset: Bias dependence of the
photoresponsivity. The used laser has a wavelength of 1550 nm.

volumes below 1.7(λ/n)3. The unprecedentedly high Q/Vmode ratio results in a spectrally
selective enhancement of radiative transitions of embedded emitters via the cavity Purcell
effect with an enhancement factor exceeding 100. Moreover, the SPPC architecture allows
straightforward integration of nanophotonic networks, shown here by a waveguide-coupled
cavity drop filter with sub-nanometer spectral resolution. The nanoscale optical confine-
ment in polymer promises new applications ranging from optical communications to organic
opto-electronics.

Following on our recent demonstration of high-Q cavities and networks in polymer pho-
tonic crystals [21], we have also developed nanophotonic 1D polymer photonic crystal res-
onators that confine light at the wavelength scale with extremely low losses, enabling quality
factors Q in excess of 8000 (limited by our detector resolution) at 600-700 nm. These are,
to our knowledge, the highest quality factors achieved in photonic crystal cavities in this
wavelength range. We have now employed these cavities for precision sensing of gases and
volatile liquids [22].

4 Summary of Publications under this Program

Journal Papers (published and under review):

1. Hannah Clevenson, Pierre Desjardins, Xuetao Gan, and Dirk Englund. High-Q sus-
pended polymer photonic crystal cavities for gas sensing. under review (2014)

2. Scalable Fabrication of High Purity Diamond Nanocrystals with Long-Spin-Coherence
Nitrogen Vacancy Centers, Matthew E. Trusheim, Luozhou Li, Edward H. Chen, Ophir
Gaathon, Hassaram Bakhru, and Dirk Englund, Nano Letters 14 (2013)
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3. Enhanced Photodetection in Graphene-Integrated Photonic Crystal Cavity, Ren-Jye
Shiue, Xuetao Gan, Yuanda Gao, Luozhou Li, Xinwen Yao, Attila Szep, Dennis Walker,
Jr., James Hone, and Dirk Englund, Appl. Phys. Lett. 103, 241109 (2013)

4. Chip-integrated ultrafast graphene photodetector with high responsivity, X. Gan, R.J.
Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, & D. Englund,
Nature Photonics AOP (2013). In the news: MIT News, Nature, Nature Photonics
News and Views,Nanowerk, Gizmodo, Photonics.com, LiveMint , IEEE Spectrum,
Phys.org, RD Magazine,NanotechWeb,

5. Controlled light-matter interaction in graphene electro-optic devices using nanopho-
tonic cavities and waveguides, Xuetao Gan, Ren-Jye Shiue, Yuanda Gao, Solomon
Assefa, James Hone and Dirk Englund, IEEE JOURNAL OF SELECTED TOPICS
IN QUANTUM ELECTRONICS on Graphene Optoelectronics (2013)

6. Reactive ion etching: optimized diamond membrane fabrication for transmission elec-
tron microscopy, L. Li, M. Trusheim , O. Gaathon , K. Kisslinger , C.-J. Cheng , M.
Lu , D. Su , X. Yao , H.-C. Huang , I. Bayn , A. Wolcott , R. M. Osgood, Jr. , and D.
Englund, Journal of Vacuum Science and Technology B, Vol. 36 (2013). Among July
2013 Top 20 Most Downloaded articles

7. Wide-field multispectral super-resolution imaging using spin-dependent fluorescence in
nanodiamonds, E. H. Chen, O. Gaathon, M. E. Trusheim, and D. Englund, Nano Lett.,
2013, 13 (5), pp 20732077

8. Nanophotonic Filters and Integrated Networks in Flexible 2D Polymer Photonic Crys-
tals, X. Gan, H. Clevenson, C.-C. Tsai, L. Li, and D. Englund, Nature Scientific
Reports 3, Article number: 2145(2013).

9. High-Contrast Electro-Optic Modulation of a Photonic Crystal Nanocavity by Elec-
trical Gating of Graphene, Xuetao Gan, Ren-Jye Shiue, Yuanda Gao, Kin Fai Mak,
Xinwen Yao, Luozhou Li, Attila Szep, Dennis Walker Jr., James Hone, Tony F. Heinz,
and Dirk Englund,Nano Lett., 2013, 13 (2), pp 691696. In the news: NanoTech Tech-
nology Update

10. Timekeeping with electron spin states in diamond, J. S. Hodges, N. Y. Yao, D. Maclau-
rin, C. Rastogi, M. D. Lukin, and D. Englund, Physical Review A 87, 032118 (2013).
In the news:PRA Highlight, Nature research highlight

11. Strong enhancement of light-matter interaction in graphene coupled to a photonic crys-
tal nanocavity, X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F. Heinz,
and D. Englund, Nano Letters, 12(11):56265631 (2012). In the News: NanoTechWeb
Research Update

12. Long-lived nitrogen vacancy spin coherence in high-purity diamond membranes, Jonathan
Hodges, Luozhou Li, Ming Lu, Edward H Chen, Matthew E Trusheim, S Allegri, Xin-
wen Yao, O Gaathon, Hassaram Bakhru, and Dirk Englund, New Journal of Physics
14 (2012).
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13. A high-resolution spectrometer based on a compact planar two dimensional photonic
crystal cavity array, Xuetao Gan, Nadia Pervez, Ioannis Kymissis, Fariba Hatami, and
Dirk Englund, Appl. Phys. Lett. 100, 23 (2012) Nature Photonics Highlight

14. Ion-Exfoliated Single-Crystal-Diamond Membranes Exhibiting Nitrogen-Vacancy Color
Centers, O. Gaathon, J. S. Hodges, E. H. Chen, L. Li, S. Bakhru, H. Bakhru, D. En-
glund, and R. M. Osgood, Jr., Volume 35, Issue 3, 361365 (2013)

15. Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,
D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff & J. Vuckovic, Phys. Rev.
Lett.108:093604 (2012).

Patent applications:

1. D. Englund et al, Ultra-high-resolution conformal lithography for patterning arbitrary
samples

2. X. Gan and D.Englund, Graphene Photonics for resonator-enhanced ultrafast electro-
optic processes and all-optical interactions (2012)

3. X. Gan and D. Englund, Chip-integrated Infrared Detector Employing Cavity-Enhanced
Upconversion (2012)

4. X. Gan and D. Englund, Ultra-compact, high quality photonic devices in a planar
polymer-on-air architecture” (2011)

5. E. Chen and D. Englund, Deterministic Emitter Switch Microscopy (DESM)” (2011)

6. D Englund, Conjugates Of Nano-Diamond And Magnetic Or Metallic Particles, Wo
Patent 2,013,066,446

7. D Englund And E Chen, Systems And Methods For Deterministic Emitter Switch
Microscopy, Wo Patent 2,013,059,404

8. D Englund And C Rastogi, Ultracompact Fabry-Perot Array For Ultracompact Hy-
perspectral Imaging, Wo Patent 2,013,059,665

9. D Englund, J Hodges, M Lukin, N Yao, High-Precision Ghz Clock Generation Using
Spin States In Diamond, Wo Patent 2,013,040,446
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